Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            Free, publicly-accessible full text available June 11, 2026
- 
            Free, publicly-accessible full text available April 25, 2026
- 
            Free, publicly-accessible full text available April 25, 2026
- 
            Free, publicly-accessible full text available December 31, 2025
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            We consider the problem of crystal materials generation using language models (LMs). A key step is to convert 3D crystal structures into 1D sequences to be processed by LMs. Prior studies used the crystallographic information framework (CIF) file stream, which fails to ensure SE(3) and periodic invariance and may not lead to unique sequence representations for a given crystal structure. Here, we propose a novel method, known as Mat2Seq, to tackle this challenge. Mat2Seq converts 3D crystal structures into 1D sequences and ensures that different mathematical descriptions of the same crystal are represented in a single unique sequence, thereby provably achieving SE(3) and periodic invariance. Experimental results show that, with language models, Mat2Seq achieves promising performance in crystal structure generation as compared with prior methods.more » « lessFree, publicly-accessible full text available December 15, 2025
- 
            Particle-based Bayesian inference methods by sampling from a partition-free target (posterior) distribution, e.g., Stein variational gradient descent (SVGD), have attracted significant attention. We propose a path-guided particle-based sampling (PGPS) method based on a novel Logweighted Shrinkage (LwS) density path linking an initial distribution to the target distribution. We propose to utilize a Neural network to learn a vector field motivated by the Fokker-Planck equation of the designed density path. Particles, initiated from the initial distribution, evolve according to the ordinary differential equation defined by the vector field. The distribution of these particles is guided along a density path from the initial distribution to the target distribution. The proposed LwS density path allows for an efficient search of modes of the target distribution while canonical methods fail. We theoretically analyze the Wasserstein distance of the distribution of the PGPS-generated samples and the target distribution due to approximation and discretization errors. Practically, the proposed PGPS-LwS method demonstrates higher Bayesian inference accuracy and better calibration ability in experiments conducted on both synthetic and real-world Bayesian learning tasks, compared to baselines, such as SVGD and Langevin dynamics, etc.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available